Mass flow rate, mach number, pressure, Isentropic Relation

problem statement: Helium gas from a storage tank at 1000 kPa and 310 K is flowing out through a convergent nozzle of exit area 3 cm2 to another tank.When the mass flow rate is 0.15 kg s−1, determine the pressure in the second tank. Solution Equations used: 2: Mach Number: 3:Pressure: 4: Isentropic Relations: Isentropic […]

Mass flow rate, mach number, pressure, Isentropic Relation Read More »

speed of sound, mach number, isentropic relations

The speed of sound (a) is equal to the square root of the ratio of specific heats (g) times the gas constant (R) times the absolute temperature (T). The derivation of this equation is given on a separate page. Notice that the temperature must be specified on an absolute scale (Kelvin or Rankine). calculator developed by- Pawan Indalkar

speed of sound, mach number, isentropic relations Read More »

work transfer equations

Argon is compressed adiabatically in a steady-flow compressor from 101 kPa and 25 ∘C to 505 kPa.. If the compression work required is 475 kJ kg−1, show that the compression process is irreversible. Assume argon to be an ideal gas. Equations used here are-work transfer equations, Work is the transfer of energy that occurs when

work transfer equations Read More »

Hypersonic Wall Temperature Calculator

– Hypersonic and High-Temperature Gas Dynamics, John D. Anderson, Jr. This formula calculates the wall temperature of a hypersonic vehicle based on the freestream velocity and temperature. It is crucial for determining thermal loads and designing the thermal protection systems required for vehicles moving at hypersonic speeds. Symbols: Tw​: Wall temperature (K) Te​: Freestream temperature

Hypersonic Wall Temperature Calculator Read More »

Hypersonic Boundary Layer Thickness Calculator

– Hypersonic and High-Temperature Gas Dynamics, John D. Anderson, Jr. This formula calculates the boundary layer thickness in hypersonic flows. The boundary layer is a thin layer of air near the surface of a vehicle where the flow velocity changes from zero to the freestream velocity. Understanding boundary layer thickness is critical for predicting drag

Hypersonic Boundary Layer Thickness Calculator Read More »

Hypersonic Specific Heat Ratio Calculator

– Hypersonic and High-Temperature Gas Dynamics, John D. Anderson, Jr. This formula calculates the ratio of specific heat in hypersonic flows. The specific heat ratio is a key parameter in a compressible flow, influencing shock wave behaviour and thermodynamic properties of gases at high speeds. Symbols: γ: Ratio of specific heats (dimensionless) Cp​: Specific heat

Hypersonic Specific Heat Ratio Calculator Read More »

Hypersonic Dynamic Pressure Calculator

– Hypersonic and High-Temperature Gas Dynamics, John D. Anderson, Jr. This formula calculates the dynamic pressure in a hypersonic flow. Dynamic pressure is a key parameter in determining the aerodynamic forces on a body moving through a fluid, especially at high Mach numbers. Symbols: q1​: Dynamic pressure γ: Ratio of specific heats (dimensionless) p1​: Freestream

Hypersonic Dynamic Pressure Calculator Read More »

Hypersonic Stanton Number Calculator

– Hypersonic and High-Temperature Gas Dynamics, John D. Anderson, Jr. This formula calculates the Stanton number in hypersonic flows, which is a measure of the heat transfer rate relative to the convective heat transport. It is a critical parameter in analysing thermal protection systems for hypersonic vehicles. Ch​: Stanton number (dimensionless) qw: Heat flux at

Hypersonic Stanton Number Calculator Read More »

Scroll to Top